Angebote zu "X-Means" (9 Treffer)

Kategorien

Shops

X-Means: Ein Algorithmus zur Clusterbildung unt...
3,99 € *
ggf. zzgl. Versand

X-Means: Ein Algorithmus zur Clusterbildung unter selbstständiger Abschätzung der optimalen Clusteranzahl ab 3.99 € als epub eBook: 1. Auflage. Aus dem Bereich: eBooks, Sachthemen & Ratgeber, Computer & Internet,

Anbieter: hugendubel
Stand: 22.01.2020
Zum Angebot
X-Means: Ein Algorithmus zur Clusterbildung unt...
3,99 € *
ggf. zzgl. Versand

X-Means: Ein Algorithmus zur Clusterbildung unter selbstständiger Abschätzung der optimalen Clusteranzahl ab 3.99 EURO 1. Auflage

Anbieter: ebook.de
Stand: 22.01.2020
Zum Angebot
X-Means: Ein Algorithmus zur Clusterbildung unt...
15,90 CHF *
zzgl. 3,50 CHF Versand

Studienarbeit aus dem Jahr 2006 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,7, Friedrich-Schiller-Universität Jena (Wirtschaftswissenschaftliche Fakultät), Veranstaltung: Datenanalyse 2, 9 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: X-Means: Extending K-means with Efficient Estimation of the Number of Cluster Aufbauend auf k-means greift der x-means Algorithmus die drei hauptsächlichen Probleme von k-means auf und versucht diese zu umgehen bzw. zu beheben. Dabei wird vom Benutzer im Gegensatz zu k-means nicht die Angabe einer Klassenanzahl k gefordert, sondern lediglich ein Bereich in welchem die optimale Klassenanzahl wahrscheinlich liegen wird. Nun werden ausgehend von der unteren Grenze des angegebenen Bereiches kontinuierlich neue Centroide hinzugefügt. Dies geschieht indem die alten 'Vatercentroide' aufgespalten werden. Aus jedem Vater werden auf diese Weise zwei 'Söhnecentroide' erstellt. Ob Vater- oder Söhnecentroide beibehalten werden wird auf Grundlage einer Punktbewertung mittels BIC ermittelt. Je nachdem wessen Punktzahl höher ausfällt, werden entweder die Söhne oder der Vater als Klassenmittelpunkte verworfen. Danach wird grundsätzlich jenes Gesamtmodell ausgegeben welches nach einem ewertungskriterium die höchste Punktzahl erreicht hat. Der x-means Algorithmus besteht grundsätzlich aus zwei Schritten: 1. Improve Params 2. Improve Structure Der erste Schritt entspricht einem herkömmlichen k-means Durchlauf. Der zweite Schritt ermittelt, welche Centroide gesplittet werden müssen um das Ergebnis zu verbessern. Auf dieser Basis und unter Einbeziehung eines kd-tree, welcher die Durchläufe der k-means Iterationen erheblich beschleunigt, werden sowohl die optimale Anzahl der Cluster wie auch die Cluster als solche ausgegeben. Dadurch wird es möglich viel grössere Datenmengen in viel kürzerer Zeit zu analysieren.

Anbieter: Orell Fuessli CH
Stand: 22.01.2020
Zum Angebot
Design, Implementierung und Analyse einer clust...
68,90 CHF *
ggf. zzgl. Versand

Inhaltsangabe:Einleitung: Der Einsatz von Datenanalyseverfahren zur Planung und Entscheidungsunterstützung gewinnt durch die enorm ansteigende Menge an zu verarbeitenden Daten für Unternehmen immer mehr an Bedeutung. Datenanalyseverfahren werden vielseitig eingesetzt, zum Beispiel die Clusteranalyse einer Kundendatenbank mit dem Ziel der Marktsegmentierung. Aus der Marktsegmentierung lassen sich wiederum Kundengruppen identifizieren, Zielgruppen ableiten sowie geeignete Marketingstrategien entwickeln. Ein weiteres Beispiel ist das Spotlight-System, welches Verkaufsdaten von Supermärkten analysiert. Das System findet Änderungen von Verkaufsmengen eines Produktes und entdeckt Zusammenhänge zwischen diesen Änderungen und möglichen Ursachen wie etwa Preis oder Qualitätsänderungen. Der Vorteil solcher Verfahren für Unternehmen, die im Wettbewerb stehen, wird in den obigen Beispielen deutlich. So gibt es eine Reihe von Softwareherstellen wie SAP oder IBM, die Lösungen zu diesem Thema anbieten. Diese Arbeit befasst sich mit der SAP Lösung, speziell mit der Clusteranalyse. Die Clusteranalyse im SAP BI basiert auf einer hocheffizienten und robusten Form des k-means Algorithmus. Dieser Algorithmus ist in der Lage, auch eine relativ grosse Datenmenge mit hoher Genauigkeit zu analysieren. Der Nachteil dieses Verfahrens besteht in der Angabe der Clusteranzahl als Parameter. Die ¿richtige¿ Clusteranzahl ist jedoch dem Benutzer in den meisten Fällen nicht bekannt. Arbeitet ein Algorithmus mit einer fest vorgegebenen Clustermenge, können unter Umständen wichtige Zusammenhänge verloren gehen, falls diese von der optimalen Clustermenge abweicht. Abbildung 1-1 verdeutlicht den Zusammenhang zwischen optimaler und nicht optimaler Clustermenge: (an dieser Stelle befindet sich im Original eine Abbildung) Um die ¿richtige¿ Clusteranzahl automatisch zu ermitteln, existieren verschiedene Lösungsansätze. Ein Beispiel ist die Bestimmung des Parameters k mittels des sogenannten Silhouetten-Koeffizienten. Dieser bestimmt die Güte einer Clusteranalyse unabhängig von der Anzahl der Cluster. Dazu wird die Clusteranalyse mit verschiedenen Werten für den Parameter k durchgeführt, anschliessend wird aus der Menge der über den Silhouetten-Koeffizienten bewerteten Ergebnisse das ¿beste¿ Clustering ausgewählt. Eine weitere Möglichkeit stellt die Erweiterung des k-means, der x-means Algorithmus von Pelleg und Moore, dar. Bei diesem Verfahren wird ebenfalls keine feste Clusteranzahl [...]

Anbieter: Orell Fuessli CH
Stand: 22.01.2020
Zum Angebot
X-Means: Ein Algorithmus zur Clusterbildung unt...
5,40 CHF *
ggf. zzgl. Versand

Studienarbeit aus dem Jahr 2006 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,7, Friedrich-Schiller-Universität Jena (Wirtschaftswissenschaftliche Fakultät), Veranstaltung: Datenanalyse 2, 9 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: X-Means: Extending K-means with Efficient Estimation of the Number of Cluster Aufbauend auf k-means greift der x-means Algorithmus die drei hauptsächlichen Probleme von k-means auf und versucht diese zu umgehen bzw. zu beheben. Dabei wird vom Benutzer im Gegensatz zu k-means nicht die Angabe einer Klassenanzahl k gefordert, sondern lediglich ein Bereich in welchem die optimale Klassenanzahl wahrscheinlich liegen wird. Nun werden ausgehend von der unteren Grenze des angegebenen Bereiches kontinuierlich neue Centroide hinzugefügt. Dies geschieht indem die alten 'Vatercentroide' aufgespalten werden. Aus jedem Vater werden auf diese Weise zwei 'Söhnecentroide' erstellt. Ob Vater- oder Söhnecentroide beibehalten werden wird auf Grundlage einer Punktbewertung mittels BIC ermittelt. Je nachdem wessen Punktzahl höher ausfällt, werden entweder die Söhne oder der Vater als Klassenmittelpunkte verworfen. Danach wird grundsätzlich jenes Gesamtmodell ausgegeben welches nach einem ewertungskriterium die höchste Punktzahl erreicht hat. Der x-means Algorithmus besteht grundsätzlich aus zwei Schritten: 1. Improve Params 2. Improve Structure Der erste Schritt entspricht einem herkömmlichen k-means Durchlauf. Der zweite Schritt ermittelt, welche Centroide gesplittet werden müssen um das Ergebnis zu verbessern. Auf dieser Basis und unter Einbeziehung eines kd-tree, welcher die Durchläufe der k-means Iterationen erheblich beschleunigt, werden sowohl die optimale Anzahl der Cluster wie auch die Cluster als solche ausgegeben. Dadurch wird es möglich viel grössere Datenmengen in viel kürzerer Zeit zu analysieren.

Anbieter: Orell Fuessli CH
Stand: 22.01.2020
Zum Angebot
X-Means: Ein Algorithmus zur Clusterbildung unt...
8,30 € *
zzgl. 3,00 € Versand

Studienarbeit aus dem Jahr 2006 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,7, Friedrich-Schiller-Universität Jena (Wirtschaftswissenschaftliche Fakultät), Veranstaltung: Datenanalyse 2, 9 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: X-Means: Extending K-means with Efficient Estimation of the Number of Cluster Aufbauend auf k-means greift der x-means Algorithmus die drei hauptsächlichen Probleme von k-means auf und versucht diese zu umgehen bzw. zu beheben. Dabei wird vom Benutzer im Gegensatz zu k-means nicht die Angabe einer Klassenanzahl k gefordert, sondern lediglich ein Bereich in welchem die optimale Klassenanzahl wahrscheinlich liegen wird. Nun werden ausgehend von der unteren Grenze des angegebenen Bereiches kontinuierlich neue Centroide hinzugefügt. Dies geschieht indem die alten 'Vatercentroide' aufgespalten werden. Aus jedem Vater werden auf diese Weise zwei 'Söhnecentroide' erstellt. Ob Vater- oder Söhnecentroide beibehalten werden wird auf Grundlage einer Punktbewertung mittels BIC ermittelt. Je nachdem wessen Punktzahl höher ausfällt, werden entweder die Söhne oder der Vater als Klassenmittelpunkte verworfen. Danach wird grundsätzlich jenes Gesamtmodell ausgegeben welches nach einem ewertungskriterium die höchste Punktzahl erreicht hat. Der x-means Algorithmus besteht grundsätzlich aus zwei Schritten: 1. Improve Params 2. Improve Structure Der erste Schritt entspricht einem herkömmlichen k-means Durchlauf. Der zweite Schritt ermittelt, welche Centroide gesplittet werden müssen um das Ergebnis zu verbessern. Auf dieser Basis und unter Einbeziehung eines kd-tree, welcher die Durchläufe der k-means Iterationen erheblich beschleunigt, werden sowohl die optimale Anzahl der Cluster wie auch die Cluster als solche ausgegeben. Dadurch wird es möglich viel größere Datenmengen in viel kürzerer Zeit zu analysieren.

Anbieter: Thalia AT
Stand: 22.01.2020
Zum Angebot
X-Means: Ein Algorithmus zur Clusterbildung unt...
3,99 € *
ggf. zzgl. Versand

Studienarbeit aus dem Jahr 2006 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,7, Friedrich-Schiller-Universität Jena (Wirtschaftswissenschaftliche Fakultät), Veranstaltung: Datenanalyse 2, 9 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: X-Means: Extending K-means with Efficient Estimation of the Number of Cluster Aufbauend auf k-means greift der x-means Algorithmus die drei hauptsächlichen Probleme von k-means auf und versucht diese zu umgehen bzw. zu beheben. Dabei wird vom Benutzer im Gegensatz zu k-means nicht die Angabe einer Klassenanzahl k gefordert, sondern lediglich ein Bereich in welchem die optimale Klassenanzahl wahrscheinlich liegen wird. Nun werden ausgehend von der unteren Grenze des angegebenen Bereiches kontinuierlich neue Centroide hinzugefügt. Dies geschieht indem die alten 'Vatercentroide' aufgespalten werden. Aus jedem Vater werden auf diese Weise zwei 'Söhnecentroide' erstellt. Ob Vater- oder Söhnecentroide beibehalten werden wird auf Grundlage einer Punktbewertung mittels BIC ermittelt. Je nachdem wessen Punktzahl höher ausfällt, werden entweder die Söhne oder der Vater als Klassenmittelpunkte verworfen. Danach wird grundsätzlich jenes Gesamtmodell ausgegeben welches nach einem ewertungskriterium die höchste Punktzahl erreicht hat. Der x-means Algorithmus besteht grundsätzlich aus zwei Schritten: 1. Improve Params 2. Improve Structure Der erste Schritt entspricht einem herkömmlichen k-means Durchlauf. Der zweite Schritt ermittelt, welche Centroide gesplittet werden müssen um das Ergebnis zu verbessern. Auf dieser Basis und unter Einbeziehung eines kd-tree, welcher die Durchläufe der k-means Iterationen erheblich beschleunigt, werden sowohl die optimale Anzahl der Cluster wie auch die Cluster als solche ausgegeben. Dadurch wird es möglich viel größere Datenmengen in viel kürzerer Zeit zu analysieren.

Anbieter: Thalia AT
Stand: 22.01.2020
Zum Angebot
Design, Implementierung und Analyse einer clust...
58,00 € *
ggf. zzgl. Versand

Inhaltsangabe:Einleitung: Der Einsatz von Datenanalyseverfahren zur Planung und Entscheidungsunterstützung gewinnt durch die enorm ansteigende Menge an zu verarbeitenden Daten für Unternehmen immer mehr an Bedeutung. Datenanalyseverfahren werden vielseitig eingesetzt, zum Beispiel die Clusteranalyse einer Kundendatenbank mit dem Ziel der Marktsegmentierung. Aus der Marktsegmentierung lassen sich wiederum Kundengruppen identifizieren, Zielgruppen ableiten sowie geeignete Marketingstrategien entwickeln. Ein weiteres Beispiel ist das Spotlight-System, welches Verkaufsdaten von Supermärkten analysiert. Das System findet Änderungen von Verkaufsmengen eines Produktes und entdeckt Zusammenhänge zwischen diesen Änderungen und möglichen Ursachen wie etwa Preis oder Qualitätsänderungen. Der Vorteil solcher Verfahren für Unternehmen, die im Wettbewerb stehen, wird in den obigen Beispielen deutlich. So gibt es eine Reihe von Softwareherstellen wie SAP oder IBM, die Lösungen zu diesem Thema anbieten. Diese Arbeit befasst sich mit der SAP Lösung, speziell mit der Clusteranalyse. Die Clusteranalyse im SAP BI basiert auf einer hocheffizienten und robusten Form des k-means Algorithmus. Dieser Algorithmus ist in der Lage, auch eine relativ große Datenmenge mit hoher Genauigkeit zu analysieren. Der Nachteil dieses Verfahrens besteht in der Angabe der Clusteranzahl als Parameter. Die ¿richtige¿ Clusteranzahl ist jedoch dem Benutzer in den meisten Fällen nicht bekannt. Arbeitet ein Algorithmus mit einer fest vorgegebenen Clustermenge, können unter Umständen wichtige Zusammenhänge verloren gehen, falls diese von der optimalen Clustermenge abweicht. Abbildung 1-1 verdeutlicht den Zusammenhang zwischen optimaler und nicht optimaler Clustermenge: (an dieser Stelle befindet sich im Original eine Abbildung) Um die ¿richtige¿ Clusteranzahl automatisch zu ermitteln, existieren verschiedene Lösungsansätze. Ein Beispiel ist die Bestimmung des Parameters k mittels des sogenannten Silhouetten-Koeffizienten. Dieser bestimmt die Güte einer Clusteranalyse unabhängig von der Anzahl der Cluster. Dazu wird die Clusteranalyse mit verschiedenen Werten für den Parameter k durchgeführt, anschließend wird aus der Menge der über den Silhouetten-Koeffizienten bewerteten Ergebnisse das ¿beste¿ Clustering ausgewählt. Eine weitere Möglichkeit stellt die Erweiterung des k-means, der x-means Algorithmus von Pelleg und Moore, dar. Bei diesem Verfahren wird ebenfalls keine feste Clusteranzahl [...]

Anbieter: Thalia AT
Stand: 22.01.2020
Zum Angebot